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The theoretical ideas of the viscoelasticity mechanism and the ways of their mathematical 
interpretation being developed simultaneously with the experimental studies are based on 
the construction of constitutive equations capable of describing the observed features of the 
viscoelastic behavior of a polymer system. Notwithstanding the considerable achievements 
of the nonstructural-phenomenological theories, it is obvious that the constitutive equa- 
tions must be formulated by proceeding from principles based on the dynamics of individ- 
ual macromolecules. This would enable one to relate the phenomenological constants of the 
theory to the specific characteristics of a macromolecular chain. The theoretical concepts of 
the viscoelasticity mechanism of a system of weakly coupled macromolecules have been 
discussed. The basic conclusions of the theory and its experimental verification bring to 
light the main features of the behavior of a macromolecule in an undiluted system (among 
other like macromolecules), namely: “to a first approximation” when perturbed a macro- 
molecule moves in an undiluted system as in an after effect medium; the mean displacement 
of its center of gravity is of a monotonic and nonlinear nature, viz. the macromolecule is 
localized near its initial position-a scale of localization or an internal length appears. 
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1. INTRODUCTION 

There is a really long history of the molecular approaches to the 
dynamic properties of a polymer system. 

As regards dilute polymer solutions, the situation was cleared by 
1960 owing to works by Kirkwood and Riseman (1948), Rouse (1953), 
Bueche (1954). Cerf (1958) and others. One of the main models known 
as the Rouse model of a macromolecule can be conceived as a set of 
Brownian particles in  a viscous liquid linearly connected to one an 
other by elastic forces due mainly to entropy forces. It is well known 
that the Rouse model with properly defined hydrodynamic interac- 
tion, excluded volume effects. and internal viscosity is well consistent 
with experimental data. 

The theory of dilute polymer solutions is the starting point of the 
theory of dynamical properties of non-dilute solutions and polymer melts 
that can be considered as a system of weakly-coupled macromolecules. 
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CONSTITUTIVE EQUATIONS FOR LINEAR POLYMERS 77 

The viscoelastic behavior of such a system was the object of investigation 
of many groups in recent decades. 

The strong elasticity of polymer solutions and melts was attributed 
initially to the network formed owing to temporary knots and/or en- 
tanglements. The network theory for the system was elaborated 
by Green and Tobolsky (1947), Lodge (1956), and Yamamoto 

Later the network concept was found to be wrong, nevertheless the 
concept of the intermediate length as the length between adjacent 
entanglements was retained in the reptation/tube theory advanced by 
de Gennes (1971) and Doi and Edwards (1978, 1979). The reptation 
concept was developed further in detail by many authors, but it 
appears to be inadequate to explain all the phenomena in polymer 
dynamics. A comprehensive discussion of the problem was given by 
Lodge et al. (1990). Despite the popularity of the theory of Doi and 
Edwards among rheologists, its predictions concerning several phe- 
nomena of pivotal significance such as the viscoelasticity of blends 
and the optical anisotrophy of slowly changing motions of macro- 
molecules differ drastically from available data. 

Below we discuss the theoretical concepts of the viscoelasticity 
mechanism of a system of weakly coupled macromolecules developed 
by Russian scientists beginning from the 1970s. The description of the 
dynamics of a macromolecule in the system is the corner stone of our 
theory. We do not assume that a macromolecule moves in a tube as it  
was done by de Gennes (1971) and Doi and Edwards (1986), neverthe- 
less a scale of localization or an internal length appears in our theory. 
This localization scale can be interpreted as the radius of a “tube” 
containing a wriggling macromolecule. But calculations show that its 
possible reptations to approximations above the first order do not 
contribute substantially to relaxation processes underlying the main 
features of the viscoelastic behavior of a polymer liquid; the reptations 
must be considered when dealing with effects of “higher orders”. Our 
theory is indeed a first approximation. 

Below we shall consider the initial tenets and prerequisites of the 
molecular theory of the viscoelastic behavior of concentrated polymer 
solutions and melts, the basic nonlinear constitutive equations of the 
theory, and its corollaries for various cases of flow. 

(1956- 1958). 
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78 YL-. G.  YANOVSKY PI  t r l .  

2. MACROMOLECULAR FOUNDATION 
OF CONSTITUTIVE EQUATION 

2.1. Dynamics of a Macromolecule 
in a Concentrated System 

To understand the mechanical behavior of an individual macro- 
molecule in its motion among its kindred. i t  is sufficient to limit oneself 
to large-scale or slowly changing motions thereof. This makes it poss- 
ible to model a macromolecule as a system of subchains. Such an 
approach was employed widely by many investigators when modeling 
the viscoelasticity and flow of polymers (Ferry, 1980 and Graessley, 
1974). Each macromolecule is represented in the form of a chain of 
linearly bonded Brownian particles numbered from 0 to N and with the 
coordinates 1''. r ' .  . . .. I' '. The 11- th particle experiences the elastic force. 

where p = 3 3  2 < R 2 ) o ,  ( R ) o  is the mean-square end-to-end distance, 
T is the temperature in energy units, while matrix A V 7  is a Rouse 
matrix and determines the bond of N + 1 particles into a linear chain. 

In  the flow of a system. every Brownian particle moves in the flow 
with the velocity gradient 

Using the symbols for a symmetrized and antisymmetrized tensor of 
the velocity gradients. we can write 

We can thus saq that every Brownian particle experiences the effect 
of the additional forces of hydrodynamic drag F f  and internal friction 
C:. The equation of motion of each of the particles can be written in 
the form of the Langevin equation: 
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CONSTITUTIVE EQUATIONS FOR LINEAR POLYMERS 79 

where cD;(t) is a random process whose characteristics are defined 
from a fluctuating-dissipative expression (Pokrovskii and Pyshnograi, 
1990). 

Such an expression holds both for the motion of a macromolecule 
in a viscous liquid (in a very simple case F = G = 0) and for its motion 
among its kindred. In the latter case, the aftereffect must be consider- 
ed in the expressions for the forces of external FT and internal friction 
G; respectively: 

the expressions in parentheses in the integrand were calculated for the 
( t  - s) moment of time. 

One can readily see that the equation of dynamics (2.2) with the 
expressions for the forces (2.1) and (2.3) is the general form of the 
equation of the dynamics of a macromolecule in a flow to a linear 
approximation with respect to the coordinates and velocities of the 
particles. However, if the general form of the equation of dynamics 
(2.2) and (2.3) is written unambiguously in this case (a linear approxi- 
mation), the memory functions in (2.3) cannot be established from 
general considerations. The involving of quite simple model considera- 
tions allowed Astarita and Marrucci (1974) to write the memory 
functions in the form 

p (s) = ( [/ z) Be - s’r 

As in Equation (2.2), in (2.4) [ is the coefficient of friction of a 
Brownian particle in a “monomer” viscous liquid, and t is a relax- 
ation time of the surroundings that coincides with the calculated main 
time of mechanical relaxation (Pokrovskii and Volkov, 1978). In other 
words, the theory is self-consistent. The parameters B and E reflect the 
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influence of the surroundings on the single molecule being considered. 
With a view to the nonlocal nature of the friction forces, one can 
estimate the chanse in these parameters depending on the length of 
the surrounding macromolecules hl. For instance, Pokrovsky (1992) 
found that 

Let us introduce the dimensionless parameters 

where T* = ,Y' 7 T p '  has the meaning of the characteristic time. 
From the physical viewpoint. T* is the maximum relaxation time of a 
macromolecule in a "monomeric" viscous liquid. 

The theory being considered is featured by the absence of the 
usually postulated intermediate length that is like the chain length 
between entanglements of the macromolecules M e ,  or tube diameter. 
I t  was understood lately that the localization of a macromolecule in 
"a tube" postulated by de Gennes follows from a formal approach 
based on Equations (2.2 - 2.4). An intermediate length appears that 
can be identified by the tube radius. Here 

The last addend in the equation of dynamics (2.2) reflects the presence 
of a random heat force whose statistical properties, as usually 
(Chandrasekhar. 1943), are determined in such a way that in an equi- 
librium situation the quantities being calculated would coincide with 
known ones. With this definition of the random force, Equation (2.2) 
can be considered as a first approximation (linearity in coordinates, 
velocities. and velocity gradients) when describing nonequilibrium 
phenomena in undiluted polymers. With this approach. the effects 
associated with nonlinear addends, e.g. reptations (De Gennes, 1971) 
are eliminated. The latter appear with a different mobility of a particle 
along and across a chain and can be described by using addends 
higher than the first order. 
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CONSTITUTIVE E Q U A T I O N S  F O R  LINEAR P O L Y M E R S  81 

2.2. Normal Modes and Morkov Form 
of Equation of Dynamics 

For convenience of further calculations, we shall use transformed 
coordinates. They will be introduced with the aid of the orthogonal 
and normalized matrix Q 

Q' A Q  = i, E 

By introducing the quantities transformed in this way and designated 
as 

into the equation of dynamics (2.2), we obtain a system of differential 
equations (Pokrovskii and Pyshnograi, 1990). 

(2.10) 

To achieve generality of the equation of dynamics of a macromolecule 
in both linear and nonlinear cases, in Equations (2.10) the scalars Bi,i 
and Eii were replaced by the tensor B and E,  respectively. With a view 
to the monomolecular approximation, the medium in which a 
Brownian particle moves is assumed to be anisotropic (on an average), 
and the anisotropy is determined only by the extended macromolecu- 
lar coils, i.e. by the tensor (Pyshnograi and Pokrovskii, 1988) 
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81 Yc.G. YANOVSKY er crl. 

where ( p ; p ; ) o  is the equilibrium value of the correlation moment 
( p ;  p i ) .  The averaging is performed over the assembly of realizations 
of the random processf;. 

Hence, B,, and Ei ,  are functions of the indicated tensor. In a linear 
approximation, the general form of the functions is as follows: 

(2.1 1) 

The addends with constant f i  and E determine the change in the 
coefficient of friction of a particle when the shape of the surrounding 
coils changes, and the addends with constant K and v when the vol- 
ume of the coils changes (expansion). 

Since at large velocity gradients the deformation of a coil cannot be 
considered small, linear approximation (2.1 1) is inadequate. For the 
more general case considered by Pokrovskii and Pyshnograi (1990), 
we can employ the convenient approximations 

1 
3 

Ei ,  = E (dik + 3~ (aik - -a , ,  dik) + \'a,,dik)- '. (2.12) 

At low changes of the size of a macromolecular coil, with an accu- 
racy up to first-order terms with respect to the components of the 
anisotropy tensor, expressions (2.11) and (2.12) coincide. 

2.3. Stresses in Deformation 

A concentrated polymer solution or melt is a system of entangled 
chains. When modeling such a system in a monomolecular approxi- 
mation, we consider that it can be represented in the form of a set of 
noninteracting macromolecules whose behavior is considered with a 
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CONSTITUTIVE EQUATIONS FOR LINEAR POLYMERS 83 

view to their neighbors. Each macromolecule is schematized by a 
chain with N + 1 Brownian particles so that the system as a whole can 
be considered as a suspension of Brownian particles in a viscoelastic 
liquid. The set of Brownian particles can be characterized by the mean 
density. 

p (x, t) = Cm(G(x - r')) = rn(N + l)n(x, t) (2.13) 
U 

and the mean pulse density 

p (x, t ) u (  x,t) = c rn (;as(x - P)) (2.14) 
U 

The angular brackets signify averaging over the ensemble of realiza- 
tions of the random forces in the equations of motion of the particles. 
Summation in (2.13) and (2.14) is performed over all the Brownian 
particles. 

When formulating the equations of motion, which consists in deriv- 
ing an expression for the stress tensor, one must consider the presence 
of two interacting continuum inserted into each other. They are formed 
by a carrying viscoelastic liquid and interacting Brownian particles 
which macromolecules are modeled by. However, the contribution of 
the carrying medium when dealing with a concentrated solution is 
insignificant and is no longer considered. 

To find the stress tensor, we proceed from the determination of the 
pulse density (2.14) holding for an arbitrary set of Brownian particles. 

By differentiating expression (14) with respect to time and employ- 
ing quite simple transformations of Equation (2.2) (Pyshnograi and 
Pokrovskii, 1988), we obtain a standard form of the equation of 
motion of a continuum: 

p ( d v , / d t )  = (dOij/dXj) 

where the stress tensor has the form 
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T :  is the transformed force of “internal” friction of a macromolecule 
determined according to i2.9). 

Assuming a locally equilibrium distribution by velocities. we can 
write the stress tensor in the form: 

(2.16) 

The pressure p includes both the partial pressure of the gas of 
Brownian particles and I I  ( N  + 1)T. and the pressure of a “monomer” 
liquid whose viscosity in our opinion could be ignored. 

By the monomolecular approach. the stress tensor of a system is 
determined by the sum of the contributions of all the macromolecules, 
i t .  by simple multiplication by the number of macromolecules n. 

In Equation (2.16), the stresses are determined by macroscopic 
mean values 

(2.17) 

that must be calculated. 
The first group of variables in Equation (2.17) characterizes the size 

and shape of a macromolecular coil and is determined so that in 
equilibrium .Y:~ = 1, 3 O;j. 

The second group of variables is associated with the “internal” stresses 
appearing because each macromolecule is intertwined with its neighbors. 

2.4. Relaxation Equations 

To obtain determining equations, we must establish relaxation equa- 
tions for the internal macroscopic parameters (2.17). To  do this, we 
shall revert to the equation of the dynamics of a macromolecule in the 
form (7.10) with account taken of approximation (2.12). After trans- 
formations, we obtain a system of relaxation equations for the internal 
moments (Pokrovskii and Pyshnograi, 1991) 
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1 + $ (Bz:/zt,) ((xfj - 3 0,) d 7k - 2 B 7: rE j,nk). (2.18) 

The auxiliary quantities b;k, c;~, d:k, e:k and f l k  are determined in terms 
of the previously introduced parameters characterizing the dynamics 
of an individual macromolecule in a system 

d:k = b:j(dkj - E k j ) ;  f yk = Cyj ( S k j  - & k j ) ;  

The system of relaxation equations includes the relaxation times 

z; 7, = 2 / 2  + B 7," (1 + $), z," = Z*/(x' (2.19) 

The relaxation processes by (2.18) are featured, particular, by aniso- 
tropy of relaxation, viz. in a deformed system different components of 
the tensors .x:k and uyk relax at a different rate. 

We shall consider below the conclusions of the theory and its appli- 
cations for various cases of deformation. 
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86 Yv.G. YANOVSKY eta1 

2.5. Discussion of the Approach 

Initially our concept was based on some rather formal approaches of 
macromolecule dynamics and some suggestions of a general kind 
(Pokrovskii and Volkov, 1978). Later the picture of thermal motion of 
macromolecules in non-dilute system was clarified step by step 
(Pokrovskii and Kokorin, 1985, 1987). The thermal motion is featured 
by localization of a macromolecule near its initial position. Figure 1. 
shows the displacement of a macromolecule and the intermediate 
length < that is similar to  the length 5 between adjacent entangle- 
ments. The motion of macromolecule is so constrained by the sur- 
rounding chains that its motion is essentially equivalent to the motion 
of the macromolecule in an effective tube. But this does not mean that 
there is reptation inside the tube. 

We can discuss this in more detail as answers to  the questions 
posed by Lodge et a/. (1990, p. 16-17). 

1. Do linear polymer chains execute primarily reptation over a non- 
vanishing region of parameter space? 

No. Reptation is a very weak effect that can be manifest in special 
cases noted by Lodge et a / .  (1990, p. 117) as strict reptation: “suffi- 
ciently long tracer chains surrounded by a matrix of much longer 

-3  -2 - 1  0 1 

log t/9: 

FIGURE 1 The displacement of the center of mass of a macromolecule depends on 
the intermediate length <-scale The displacement is measured in units of 
( r ( R ’ )  7?7*)’ 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
1
:
4
6
 
1
9
 
J
a
n
u
a
r
y
 
2
0
1
1



CONSTITUTIVE EQUATIONS FOR LINEAR POLYMERS 87 

chains, and unattached chains in a regular network”. It is incorrect to 
consider reptation as a first approximation of the theory of relaxation 
of macromolecules. 

*What is fundamentally incorrect in the reptation model? 
The postulation of reptation as the main form of thermal motion of 
macromolecules is incorrect. 

The strongest evidence against reptation is the discrepancies of the 
results for the viscoelasticity of a dilute blend of a linear polymer 
(Yanovsky et al. 1980, Vinogradov et al. 1982, Pokrovskii and 
Kokorin 1985, Yonovsky 1993). 

We most likely set out the best monomacromolecular approach that 
includes all the features of behavior of linear polymers. 
The Schweizer’s (1989a, 1989b, 1991) monomacromolecular 
approach is naturally better, but it is not completed yet. 

*Why does the reptation picture seem to agree with so many observa- 
tions? 

Some effects are consequences not of reptation, but of constraints 
of motion with on internal length postulated in the reptation, theory 
that appears in our theory as a localization effect. Besides, the repta- 
tion theory has its region of validity pointed out by Lodge et al. 
(1990, p. 117). 

*What is the strongest evidence against reptation? 

*What is the most promising alternative approach? 

2. What further experiments, if any, are required to answer question 1 
without any reasonable doubt? 

A comparison of dynamic birefringence and the dynamic modulus. 
Investigation of birefringence and viscoelasticity of a dilute blend of 
polymers. The predictions of the reptation theory and our theory are 
quite different (Pokrovskii and Kokorin, 1985, 1987). 
3. In what direction should future theoretical efforts be aimed? 

tion of multimacromolecular approaches. 
The main direction of future theoretical efforts should be investiga- 

These are replies to the questions of Lodge et al. (1990, p. 16-17). 

Despite the continuing research into the problem there is no evi- 
dence of any conflict between the large volume of experimental data 
that has now accumulated and the discussed theory. 
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3. UNIFORM MOTION WITH LOW VELOCITY GRADIENTS 

System of Equations (2.16) and (2.18) determines the stresses in a polymer 
liquid as functions of velocity gradients, in other words system of Equa- 
tions (216) and (2.18) is a constitutive equation of a polymer liquid that 
was formulated by proceeding from principles based on the dynamics of 
individual macromolecules. To compare the theoretical predictions with 
experimental results. let us first consider low velocity gradients. 

3.1. Dynamic Modulus 

The viscoelastic behavior of a polymer system is manifest in the most 
typical way in uniform oscillating motion 

~ - imt 
"1 2 

The expressions for the stresses and moments in a linear case also deter- 
mine the expression for the dynamic modulus. which in the general case 
has the form (Yanovsky ef a[. 1988. Pokrovskii 1992, Yanovsky 1993) 

The frequency dependence of the dynamic modulus is shown in Fig- 
ure 2 and in the approximation considered here (at low frequencies) is 
determined by relaxation processes with two sets of relaxation times 
whose values are determined by Equations (2.18) 

It should be noted that the indicated curve has two relaxation 
branches. The one with slower relaxation processes due to the change 
in the average size of a macromolecule is hardly manifest on the 
frequency dependence of the dynamic modulus, though the reptation 
relaxation processes ought to be identified exactly with this branch. 

The intermediate plateau in the modulus is associated with the 
intermediate length 

(3.3) 
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l o g  G '  

89 

, 

4 

108 G "  

6 

- 4  - 2  0 2 106 w 

FIGURE 2 Experimental and theoretical frequency dependences of the real G' and 
imaginary G" components of the dynamic shear modulus. The points were reproduced 
from Onogi, S. et a / .  (1970) for polystyrene with a molecular weight of 215000 at 160 C .  
The theoretical values indicated by the dashed lines were calculated for values of 
B = 3 x 10'; E = 2 x lo4; = 0.08; 7* = 5 x 10-5s and nT= 1.7 x lo5 dyn. cm-'. 

It is clear from the picture that the main relaxation branch is the one 
numbered 2. Its set of relaxation times (3.2) is not wide and can be 
approximated with a single relaxation time T that coincides with the 
introduced relaxation time T .  Hence at $ -+ we have self-consistency 
without any extra requirement. The requirement of the equality of 
relaxation times of macro- and microviscoelasticity gives a first order 
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a relation with respect to I/- 

Recently Leonov (1994) attempted to improve the theory by focusing on 
the formulation of the true self-consistency condition for the model, that 
is the requirement of equality of the micro- and macroviscoelasticities. 

However, simple reasoning shows that “the true self-consistency 
condition” cannot be reached. Indeed, a macromolecule in a viscous 
fluid gives one set of relaxation times, in a fluid with one relaxation 
time gives a several sets of relaxation times, and so on. That is why in 
our papers we stopped using the “true self-consistency condition” and 
discussed the correlation between the relaxation times of micro and 
macroviscoelasticity. A self-consistency condition of this kind was dis- 
cussed by Pokrovskii (1992). 

3.2. Steady Simple Shear 

In steady shear, to a first approximation according to the velocity gradi- 
ent, only the shear differs from zero: 

Approximations of a higher order reveal that normal stresses are also 
needed to realize shear strain. For low values of the parameters x, I/ and 
fl  (here p = ti. E = v). it was found that (Pokrovskii and Kokorin, 1985) 

0 1 2  = ‘I’ll2 

033 + p = 0 
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In summarizing the results obtained in (3.4), we must note three fac- 
tors causing the appearance of nonlinear effects in shear, namely, (i) 
the effective nonlinear rigidity of a macromolecule ($), (ii) the after- 
effect of the surroundings (x), and (iii) the effects connected with a 
change in the size and shape of the macromolecular coils (p). 

We can obtain relations for shear strain from expressions (3.4): 

P 0 2 2 - 0 3 3 -  l5 
OI1 - 0 3 3  271. 2 (3.7) 

They can be verified experimentally. By data typical for concentrated 
polymer systems (Graessley, 1974), the first difference of the normal 
stresses nl1 - C T ~ ~  is proportional to the square of the shear stresses in 
the region of low velocity gradients. The second difference of the 
normal stresses 0 2 2 - ~ 3 3  is low in comparison with the first one, 
which conforms with the previous statement on the smallness of the 
parameters j3 and x. 

3.3. Extentional Flow 

Steady uniaxial extentional flow is studied on the basis of Equations 
(2.16) and (2.18). 

Stickfort (1986) showed that the steady extentional viscosity could 
be represented vs. the shear stress B as follows: 

where y (0) and a (0) are phenomenological functions, the slip and 
anisotropy of the flow coefficients, respectively. On the basis of the 
constitutive Equations (2.16) and (2.18), Pyshnograi (1994) calculated 
the first terms in the series of y(a) and @(a) by degrees of tensile 
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stresses. With precision of the second order with respect to 0, we have 

where ;'o = 3 r2ii T B r *  and a = G 11 7: 
This relations correspond to the information given by Stickforth 

(1986) on the functions ;*(o) and ~ ( c r ) .  which was obtained from experi- 
mental data. The last relation in 13.8) determines the relation between 
the phenomenological (macro) anisotropy and microanisotropy coeffi- 
cient 1). 

4. CONSTITUTIVE EQUATION FOR FLOWABLE SYSTEM 

I t  can be seen from the preceding section that the system of constitu- 
tive Equations (2.16) and (2.18). notwithstanding the simplifying 
assumptions. is quite cumbersome. To facilitate further calculations, i t  
is expedient to employ additional assumptions. in particular, low values 
of some parameters of theory. ( I t  must be stressed, however, that in 
principle the investigation of a quite general case is also possible.) 

4.1. Condition of Flowability 

The irreversible flow of a system becomes appreciable for observation 
times longer than the relaxation times of a macromolecule, the longest 
of which is, according to (3.1) 

In analyzing the system of equations. we can note that the parameter 
1 by the meaning of the problem posed [see expression ( 2 . 7 ) ]  changes 
within the range of values from 0.01 to 0.1 We can consider it to be 
small with adequate grounds. At the same time, the parameter I) may 
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have either large or small values, which corresponds to two different 
cases of behavior of the system. At large values of $ and low velocity 
gradients, the relaxation times [see Equation (3.2)] of the first set of 
variables considerably exceed the relaxation times of the second set, 
for which z," = r holds in this case. Actually, these relaxation times are 
manifest as a single main one-the most noticeable relaxation time 
determining the viscoelastic behaviour of a system as a whole. Since 
the relaxation processes with the first set of relaxation times contri- 
bute only slightly to the stresses, i.e. are actually not noticeable, the 
durations of flow are compared with the relaxation time z and the 
system is perceived as a nonflowing one. 

In the other limit case when $ << 1, the systems are perceived as 
flowing ones. This case is the most interesting for applications connec- 
ted, in particular, with the theory of polymer article molding. 

Since for cases of flow, the system of Equations (2.16) and (2.18) can 
be simplified because of the low values of the parameters x and I), we 
shall discuss below the results obtained exactly in the approximation 
to first-order terms with respect to and $. 

4.2. Zero-Order Approximation 

We shall now discuss the possible simplification of the indicated expres- 
sions with respect to x and $ holding for any arbitrary velocity gradients. 
In this case from Equations (2.16) and (2.18) in the zero approximation in 
parameters j !  and I) we obtain a system of constitutive relations. 

Then we retain the only internal variable characterizing the highest 
relaxation times and obtain relations for the stress tensor and an 
equation for the internal variable. 
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The system includes the characteristics of the material ‘lo is the 
initial shear viscosity, z0 is the initial relaxation time, K and p 
determine the effect of changing of the volume ( K )  and form ( p )  of a 
molecular coil on the macromolecule dynamics. 

One of the properties of constitutive Equations (4.2) is the aniso- 
tropy of relaxation: different components of the tensor til approach 
equilibrium at a different rate. When anisotropy is disregarded ( p  = 0), 
system of Equations (4.2) takes on a simpler form 

o . .=  - p a . . +  3- ‘I T ( - 1 1  r‘..--6.. 11) 

. ZD = ass = CSS - 1. 1 + tiDJ3’ 

The quantity in system (4.3) has the meaning of the shear viscosity 
coefficient and depends on the invariance of the tensor uij in the same 
way as the relaxation time 

- = L = ( l , j ~ D )  ‘l 1 - ’  =cp(D) 
‘ lo  To 

(4.4) 

The subscript “0“ signifies the initial (independent of the argument) 
values of the relevant quantities. 

The argument of the shear viscosity coefficient and relaxation time 
in the approximation being considered has the meaning of the first 
invariant of the tensor of additional stresses 

Consequently, in a very simple variant, the system of determining 
Equations (4.3)-(4.5) contains two rheological parameters: the initial 
shear viscosity q0 and the initial relaxation time T ~ ,  as well as the 
dimensionless function cp(D). 
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4.3. Steady Simple Shear 

In practice, the properties of a polymer liquid were mainly studied by 
uniform shear, that is, only one component of the gradient rate tensor 
differs from 0, namely, v12 # 0. However in analyzing the shear defor- 
mation of viscoelastic media, we have to take into account not only 
the tangential stresses o1 2, as for linear viscoelastic liquids, but also 
the normal stresses. The latter can be set as the difference of the 
normal stresses o1 - 022 and 022 - 033. The stresses under considera- 
tion are defined as 

In a theoretical interpretation of the coefficients of shear viscosity q 
and normal stresses Y and Y2,  in general, one can assume ,6 # 0. In 
this case the system of Equations (2.2) defines the above coefficients as 
functions of the gradient rates. 

Figures 3,4 shows the steady shear viscosity q versus the dimension- 
less shear rate zovI2 for various values of the parameters IC and ,6. The 
curves in Figure 3 show that as p increases, the deviation of q from qo 
also increases. It should be noted that variation of the parameter K has 

I E (  9 12e ‘1 

FIGURE 3 Viscosity vs. shear rate for different values of the parameter ~ : l  - 0.2; 
2 - 0.3; 3 - 1.0. fi  = 0.2. 
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a sinall affect on the values of the viscosimetric functions. Figure 5 
shoas the shear stress versus the dimensionless shear rate for various 
valiies of the parameters p. If 11 < x. the value of the shear stress is an 

3 ,* 0: 0) 

FIGURE 3 
2 - 0.1: 3 - 0.15: 4 - 0.2: 5 - 0.3. I; = 0.2. 

Viscosit). vs. shear rate for different raliies of the parameter /1:1 - 0.05; 

1 
2 

4 

0 3 

-1 

-2 

FIGIiRF 5 
I?!. 1 for the curies). h = 0.7. 

Shear stress vs. shear rate for Jiirerent values of the parameter /3 (see 
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increasing function of the shear rate that is consistent with experimental 
data. 

In Figure6, the first normal stress coefficient Yl is plotted versus 
the shear rate and diminishes when the latter grows. 

The dependence of the ratio of the second normal stress difference 
to the first one Y2/Yl is given in Figure 7. This ratio is negative and 
decrcases depending on the magnitude of a function of the dimension- 
less shear rate. This also agrees with experimental data. 

If the gradient rates are small, the parameters q, Yl and V2 with a 
second order approximation can be written as follows: 

Comparison of the theoretical calculated data (Figs. 3-7) and the 
experimental results shows that the above theory gives sufficiently 
reliable relations, observed experimentally. Particularly, the second 
difference of normal stresses is negative and small in comparison with 

FIGURE 6 First normal stress coefficient vs. the shear rate for different values of the 
parameter p:1 - 0.05; 2 - 0.1; 3 - 0.2; 4 - 0.3. K = 0.2 /1:1 - 0.05; 2 -0.1; 3 - 0.2 4 - 0.3. 
ti = 0.2. 
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16 

12 

8 

4 

-2 -1.5 -1 -0,5 0 1 1,5 2 
0 

FIGURE 7 
rate for different values of the parameter jj (see Fig. 4 for the curves). ti = 0.2. 

Ratio of the second normal stress difference to the first one vs. the shear 

the first one (Graessley, 1974). It shows the anisotropy coefficient to be 
a small quantity. 

At small magnitudes of the gradient rates, the ratio of the normal 
stress difference depends only on the coefficient anisotropy: 

Figure7 shows such a ratio for an arbitrary value of the gradient rate. 
In the zero approximation of a viscoelastic flow, the ratio of the 

nor ma^ stress di~erence should not depend on the macromo~ecu~e length. 
For experiInenta1 verification of the above inference, one must 

obtain the vaIue of this ratio for samples characterized well by the 
molecular parameters. Unfortunately. in vien of the problems connec- 
ted with difficulties of measuring the second normal stress difference 
investigations of this kind still remain incomplete. 

One can notice that when a - 0  of simple shear, the following 
expressions can be obtained from systems (4.3) 

1 1 
i 7 =  ?lo (, + p): ‘5 ;= T o  (( ( I  + p): Y ,  = 2qs;  Y 2  = 0;  (4.9) 
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Vik = 

where D = Z ~ / ~ I ~ ( ( T , ,  + 3p) is the first dimensionless invariant of the 
additional stress tensor. 

Expressions (4.9) are more approximate in comparison with (4.6) 
and (4.7). 

v11 0 0 
1 

0 -- 2 ’ h  0 
1 - _  

4.4. Relation Between Shear and Extentional 
Viscosity Coefficients 

Consider the case of employing system (4.3) for describing the 
uniaxial tension of a polymer liquid with an extentional viscosity 
coefficient i (i is determined by the ratio of the tensile stress 0 to the 
velocity gradient vI1). We shall calculate the ratio between the coeffi- 
cients of extentional A and shear viscosity q,  namely, the quantity i / q  
by using system of Equations (4.2). For uniform uniaxial tension of a 
polymer liquid along axis 1, the tensor of the velocity gradients (the 
values of v I 1  do not depend on the coordinates) with a view to the 
conditions of incompressibility can be written in the form 

Excluding the pressure from the relations for the stresses [see system 
of Equations (4.3)] because we are considering uniaxial tension, we 
obtain an expression for the tensile stress 

where 

1 2zv 5 . .  =- +- 
I t  3 1 - 2ViiT 

(4.1 1) 

The tensile stress in the steady case characterizes the apparent 
extentional viscosity 

(4.12) YI 2 3 
1 - TV1 1 - 2(zv1 
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Figure 8 shows the steady extentional viscosity i versus the dimen- 
sionless elongational rate v1 l ~ o  for different values of the parameters 
K = p. Here the extentional viscosity increases with the extentional rate. 

The viscosity coefficients f/ and i are functions of the first invariant 
of the tensor of stresses 

which with the aid of expressions (4.7) and (4.8) is written in terms of 
the velocity gradient 

(4.13) 

Analysis of expressions (4.9) and (4.10) enables us to obtain an express- 
ion for the ratio of the coefficients of extentional and shear viscosity 

(4.14) 

3 

2 
2 

3 

4 

5 

0 6 

1 

-2 -1,5 -1 -0,5 0 0,5 1 1,5 2 

lg( &.T * )  

FIGURE 8 
parameter /i = ti:l - 0.0: 2 - 0.01: 3 - 0.05: 4 - 0.1; 5 - 0.2: 6 ~ 0.5. 

Elongatiunal viscosity L S .  elongationnl rate for different values of the 
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For shear strain, the invariant D has the form: 

and for uniaxial tension 

(4.15) 

(4.16) 

It should be noted that when deriving expression (4.14) we used the 
assumption that q and i are functions of D ,  but we did not give the 
specific form of this function. 

Expression (4.14) makes it possible to see whether the system of 
equations (2.3) discussed above can be employed to describe flows of 
polymer liquids differing in their nature. 

Figure9 presents experimental values of 2/11 depending on D for 
numerous polymer system in comparison with theoretical calculations 
by formula (4.16). The experimental results can be seen to have a 
definite scatter relative to the theoretical curve, which can be ascribed 
to both natural experimental errors and the necessity of introducing 
theoretical corrections associated with the parameters jy and Y .  How- 
ever, the observed consistence of the experimental and theoretical 
appraisals can be considered satisfactory. This points to the possibility 
of employing the proposed theoretical relations for describing the 
properties of various types of polymer systems. 

We draw attention to the fact the expression (4.12) equals infinity 
when v I 1  = 1/22. This feature has no real physical meaning, but is 
connected with the fact that expression (4.12) holds for small tensions 
and, consequently, for low velocity gradients, when the following con- 
dition is observed for the velocity gradient: 

2zv  << 1 

or an equivalent condition is observed for the applied stress 

T o  1lt 
Yo 2 1  
-cT<<-- 

The values of L j q  calculated by formulas (4.14) for large stress values 
approach the boundary of the applicability region asymptotically. 
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3 .  

-4 - 2  0 

FIGURE 9 Theoretical (dashed line) and experimental (solid lines) dependences of the 
ratio of the longitudinal and shear viscosity coefficients on the invariant tensor of 
additional stresses for the systems listed in the table. 

Hence, theory does not lead to infinite stresses that may exceed the 
actually observed ones. The use of Equation. (4.14) with large stress 
values also has restrictions because of an initial prerequisite introduc- 
ed into the theory. namely. on the unlimited stretching of a macro- 
molecule. This condition is naturally not observed in a real situation 
because a macromolecule can stretch only to a certain limit. 

4.5. Nonsteady Simple Shear 

To consider the problem, let us compile constitutive equations for 
small velocity gradients. In this case, we consider a quite simple case 
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CONSTITUTIVE EQUATIONS FOR LINEAR POLYMERS 103 

when the nonlinear effects are associated only with a change in the 
volume of the macromolecular coils. In expressions (2.18), the values 
of p = E = 0 correspond to this condition. We can see here that the 
effects connected with anisotropy of relaxation are eliminated, and the 
system of relaxation equations acquires the form: 

where the following values are used for the relaxation times: 

Equations (2.16), (4.17) and (4.18) form a system of constitutive equa- 
tions of a linear polymer with two sets of internal relaxation variables. 

According to the structure of Equation (4.19), the quantities u:k are 
proportional to E ,  hence in the indicated equation we can assume that 

This enables us to write the following expression instead of (4.18) 
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and hence the system of equations (2. 16). (4.17) and (4.20) with an 
accuracy within first-order terms with respect to and \Y is exactly a 
system of constitutive equations for flowing polymer systems. 

As an example confirming the possibilities of employing the above 
expressions for practical estimates, we shall compare the results of 
theoretical calculations with experimental ones. This is shown in 
Figure 10 in the form of a plot of the shear stresses vs. the shear strain. 
( I t  should be noted that the normal stresses evaluated for this case 
also vary nonrnonotonically (Grebnev and Pokrovskii, 1987). The 
comparison of the experimental and theoretical relations (Fig. 10) can 
be considered as satisfactory only for comparatively low velocity 
gradients. This is not surprising. by the way, because considerable 

0 

4 

1 

r 
I 1 

10 20 30 0 

3 1 2 t  

FIGURE 10 Experimental values (dots. according to Trapeznikov. A. and Korotina, 
.I.. 19711 and theoretical plot of  the shear stress vs. the shear strain (solid lines) for 
velocrt? gradients of: 1-0.0182: 2-0.0313: 3-0.0627: 4 - 0 . 1 ? X 1 .  The theoretical 
curves were plotted for values of nT = 1170dyn. ern-?: ! l o  = 17.5s; 7 = 0.1 I :  $ = 12. 
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velocity gradients should lead to considerable anisotropy, which in the 
given example was not considered. 

It can be seen from (4.6) that the time dependences of the shear and 
normal stresses with a steady shear flow (a constant velocity gradient) 
with a view to the adopted simplifications are monotonic. (Compare 
with the results in Fig. 5). 

5. PULSATING AND OSCILLATING FLOWS IN TUBES 

In giving above examples of reducing the determining equations to 
simpler forms, the authors understood that any simplification is asso- 
ciated with the exclusion of the possibility of analyzing a number of quite 
fine effects. However, when these effects are secondary or unimportant 
with respect to the main process, such simplifications are quite justified. 

In many specific practical cases, in particular with nonuniform 
movements of a flowing polymer system in channels having an intri- 
cate configuration, it becomes necessary to employ a quite simple 
system of Equations approximating the flow process in the region of 
arbitrary velocity gradients. We have already given a system of consti- 
tutive Equations (4.2) or (4.3) obtained for the flow of a polymer 
liquid. When investigating a complex nonuniform flow, it is also con- 
venient to employ system (4.2) or (4.3), setting definite simplifications 
beforehand. We shall indicate as an example the results of studying 
the influence of pressure oscillations when a polymer liquid flows in a 
tube. For this purpose, consider the polymer liquid to flow in a long 
tube of radius R under the effect of an oscillating pressure difference: 

p = po( 1 + A sin ot). 

5.1. Motion Equations 

The basic motion and relaxation equations describing the oscillating 
and pulsating flows of a viscoelastic fluid (undilute polymer solution) 
in annular ducts with sinusoidal variations of the pressure gradient in 
time, as follows from (4.3), are: 
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,f( D )  = (1 + k D ) - ”  

where d p ,  r l ;  = ( d p  I d z ) ,  (1  + A sin tor) and ( d p i d ~ ) ~  is the steady pres- 
sure gradient. 

The physical meaning of the criteria is as follows: Re, = p R 2 w /  
(87~rl,,) is the pulsational Reynolds number; D e  = wr0/(2n) is the 
Deborah number; We = - ( d p ! d z ) ,  Rs,,(4ri0) is the Weissenberg 
number. When analyzing pulsating flows. the dimensionless elasticity 
number E /  equal to the ratio between the Deborah number and pulsa- 
tional Reynolds number El = De;  Re, = I / ~ T ~ ! ! (  pR’), is frequently used. 
The set of values of these criteria defines the deviation of the velocity 
profiles and volumetric flow rates at different phases of the pulsation 
period from their equilibrium values. 

The flow rate characteristics of a pulsating flow of viscoelastic fluids 
over a wide range of Weissenberg and Deborah numbers and pulsational 
Reynolds number (Re f  = lo-’  - 0.2: We = 0.4 - 5; De = 0.01 - 5 )  were 
studied theoretically (Astarita and Marrucci, 1974 and Doi and Edwards, 
1986). 

We compared calculated results with data for an aqueous poly- 
acrylamide solution. Its rheological properties (the parameter ti = 0.06, 
11 = 0.55, the value of zero-shear-rate viscosity 1 7 ,  = 0.323 Pa.s and the 
value of r o  = 1.35 s in the Equation (5. 1)) were determined by conven- 
tional methods of stationary rotational viscosimetry (Astarita and 
Marrucci, 1974 and Doi and Edwards, 1986). 

5.2. Velocity Fields 

The frequency of oscillations in the experiments (Altukhov et a/., 1986) 
with the polyacrylamide solution changed in the range of 0.15-0.5 Hz. In 
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this case, the Deborah numbers varied in the range of 0.04-0.13. The 
pulsating Reynolds number remained small (Rej < The oscillating 
flow of the polyacrylamide solutions is characterized by a pronounced 
phase shift between the velocity and pressure gradient. The phase shift 
increased with the frequency and amounted to cp - 35-45'- under the 
experimental conditions. In glycerin (Newtonian fluid) flow, the pressure 
gradient changed by a sinusoidal law, but in a polyacrylamide solution 
the pressure gradient increased more sharply than it decreased. 

A pulsating flow is more complicated than an oscillating one, as the 
extent of the pressure pulsation effect depends on the value of the steady 
pressure gradient in the flow (Weissenberg number We), which defines 
the variation rheological properties of the fluid. 

In the experiments conducted under inertialess conditions at a con- 
stant value of the mean pressure drop (We = const), the frequency f and 
amplitude A of the pressure gradient variations were changed. In this 
case, the values of Deborah number were in the same ranges as in 
oscillating flow, while the amplitude of the oscillations was higher 

The values of the axial velocity and changes in velocity over a tube 
section obtained in experiments were compared with calculations by 
Equations (5). The results of the calculations for relative velocity values 
are shown in Figure 11 and Figure 12 by solid lines (the experimental 
values are shown by dots). One can see from the figures that the calcula- 
tions describe satisfactorily both the experimentally observed features of 
the axial velocity changes in different phases of the pulsation period and 
the velocity profile flatness over the tube section. 

( A  = 0.65-0.8). 

5.3. Flow Enhancement 

Similar to velocity profiles, the flow rate characteristics of the pulsating 
flow of a nonlinear viscoelastic fluid depend on their rheological proper- 
ties and the flow conditions. Measurements were performed with both 
the sinusoidal and stepwise pressure gradient variation. The change in 
the flow rate of a pulsating flow in comparison with that of a steady-state 
one is usually determined by the flow enhancement I = (Q,/Qo) - 1, 
where Q, and Q, are the mean flow rates of the pulsating and steady-state 
flows, respectively. According to the available results of theoretical and 
experimental studies, the effect of the above criteria on the value of I 
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a) 
- - 

(u  u )/(Uom-U0) 0- 0 

- 
t 

I 

0,7 0,8 0.9 1,0 -1.1 

-0,8 L 

- 
(U -ii l/(u*m-uo) 0 0  

t 

-0,4 - 
-0,8 - 

F I G U R E  I 1 Coniparimi of experinicntal values (dots) of axial velocity pulsations 
and calculated one5 Isolld line). The frequencies of oscillations ;ire: ( I  - 0.15 Hz: h- 0.5 
H L .  

appeared to be different not only qualitatively. but also quantitatively. The 
system of determining Equations (3-4) was used to study this theoretically. 

I t  had previously been shown theoretically and confirmed experi- 
mentally up to  values A I 0.45 the I - A’. Our  experiments showed 
that this dependence is valid at  substantially higher values of the 
relative amplitude of the pressure-gradient pulsation. Therefore, in the 
following. the experimental results will be represented a s  the basic 
f lmv enhancement I ‘ A ’ .  

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
1
:
4
6
 
1
9
 
J
a
n
u
a
r
y
 
2
0
1
1



CONSTITUTIVE EQUATIONS FOR LINEAR POLYMERS 109 

0 0 , l  0.2 0,3 0,4 0,5 0,6 0,7 0.8 0.9 1 

r/R 

u/u, b) 

0 0 , l  0,2 0,3 0,4  0,5 0 , 6  0,7 0,8 0,9 1 

r/R 

FIGURE 12 
profiles. The  frequencies of the oscillations are: a - 0.15 Hz; b - 0.5 Hz. 

Comparison of experimental (dots) and calculated (solid line) velocity 

By using aqueous polyacrylamide solutions of different concentra- 
tions and changing the pulsation frequency and mean values of the 
steady pressure gradient, we were able to combine some dimensionless 
criteria in the experiments. 

If ReJ >> 1, the pulsating component of the shear wave does not 
propagate over the entire tube section during the pulsation period and 
the pulsation effect on the fluid flow rate will be small. 

At De << 1 one can speak of the equilibrium nature of the flow, when 
the relaxation properties of the fluid are not practically exhibited. In 
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this case. the pulsation effect will be defined solely by the nonlinear 
viscous properties of the fluid. This case was considered earlier by a 
number of authors. One  should also not expect a substantial effect of 
nonlinear viscoelastic properties of fluid at small values of reversible 
deformations. i.e. at small values of the Weissenberg number. 

Case Re,  << 1: D e  < 1. Figure 13 shows the experimental and  theo- 
retical values of I 4' as a function of WP for a fixed Dr.  This range of 
data corresponds to the curve for the theoretically-predicted depend- 
ence of I A' on W ~ J .  

Case Re,.<< 1: WL' 2 4; 0 < Dr < 1.2. Figure 14 presents the values of 
basic flow enhancement I ,4' as a function of the Deborah number, 
obtained for two different values of the Weissenberg number. With a n  
increase in De. the value of 1 A' decreases at  Wc = 3.7. but that of 
I A' increases weakly at  We = 5.2. 

It was shown theoretically earlier (Altukhov et ul., 1986) that the 
flow enhancement curve I as a function of the dimensionless pulsation 
frequency had both descending and ascending branches. Previously, 
experiments could obtain only one branch of the flow enhancement 
curve I ( D r ) .  generally. a curve dropping with a growing frequency. In 
o u r  experiments. for the first time. both branches of the curve of flow 
enhancement vs. Deborah number were obtained in one experimental 
setup. The calculations performed for Equations ( 3 - 5 )  confirm this 

0 , 4 -  

012-  

0 ,  

I / A 2  

I 

0 
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I / A 2  

a 0 0 
' ' j /  0 0 0  

0 

0 1.2 
De 

FIGURE 14 Basic flow enhancement l / A Z  vs. De for the stepwise law of pressure 
gradient variation (We:l - 5.2;  2 - 3.7). 

result (Fig. 15). Both the regions of decreasing and increasing flow 
rates with an increasing Deborah number were found. 

One can see form the experiments and calculations that at certain 
combinations of the viscoelastic fluid properties and parameters of 
pressure gradient pulsations, a considerable increase in the fluid flow 
rate can be attained as compared with steady flow with the same 
mean values of the pressure gradient. However, according to calcula- 
tion (Astarita and Marrucci, 1974 and Edwards, 1982), this can be 
achieved only by increasing the power necessary for viscoelastic fluid 
pumping. 

5.4. Nonisothermal Flows 

The heat transfer in oscillating flows of viscoelastic fluids with 
sinusoidal variations of the pressure gradient in time are studied 
theoretically. The system (4), (5) together with energy equation 

dT dT d2T d 2 T  
Fo-'-+Peu-=-+- 

at  az d r 2  d z 2  
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I12 

I / A 2  

where 7 is a dimensionless temperature; Fo is the Fourier number 
and Pe is the Pecle number. was used as the basic system to study 
unsteady-state heat transfer in a round tube (Popov and Altukhov, 
1 992 1. 

The chief results of the calculations are shown in Figures 16-17. As 
can be seen from the calculations. a resonance regime of heat transfer 
ma) exist in oscillating flo~vs. 

Let us note in conclusion that a numerical and experimental studies 
of the secondary flows that occiir in the laminar pressure-driven 
motion of polymer solutions in  ducts of noncircular cross-section were 
performed. A numerical and experimentally study of the secondary 
flows that occur in  the laminar pressure-driven motion of dilute poly- 
mer solutions in ducts of a rectangular cross-section is presented. The 
full nonlinear two-dimensional equations of motion for a viscoelastic 
fluid with shear thinning are solved by an  explicit finite-difference 
technique. The results are presented that indicate the existence of the 
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0 0,5 1 195 2 2s5 
We 

FIGURE 16 Basic flow enhancement I / A Z  vs. We. (El = 50). 

0 t 

094 098 192 1,6 2 10 

De 

FIGURE 17 The difference of unsteady Nusselt number and steady one vs. De. 
Curves 1 ~ 5 are the values of P e -  x/d: 1 - 0.128; 2 - 0.266; 3 - 0.5; 4 ~ 0.675; 5 - 1.9, 
respectively. 
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T A B L E  I Characteristics of presented aystems 

.T j , . j r u i i  7 ( -  ( . " n  ! / , , T o  l/o.Pll.S i 0 . S  N 

Hiph [lensit! I'ol!eth!leiw 

L o n  Densit! I'ol~cth! lene 
[Luo.  X. L. and 3 ~ l i t a o u I i ~ .  E.. 

Aqueous m l u t i o n  of 
€'ul!acrilaiiiide ( 0 . 0 5 " ~  v, . I  
[Deibei-. J .  A. and 
Schoadtei-. N'. R.. IOSl]  _-  ' 7  ~ 9.45 x 10'' 1.37 x 10" 1.45 x 10 ' 3 

[ P x k .  I I .  J. L'r td.. 19923 I80 100 2.5 x 10' 2.x x 10' 1.12 x loo 1 

19901 I60 I00 1.45 x 10' 5.65 x 10' 3 . N  x 10' 2 

previously observed vortex secondary flow in ducts of a noncircular 
cross-section. It n a s  demonstrated experimentally and  theoretically 
that the laminar pressure driven flow of a viscoelastic fluid in noncir- 
cular ducts is not unidirectional like its Newtonian counterpart. A 
weak secondary flow occurs in the transverse planes of the ducts that 
causes fluid particles t o  undergo a spiraling motion down the duct in 
contrast to the rectilinear particle paths in a Newtonian fluid. 

6.  CONCLUSION 

Thc use of the methods of statistical mechanics to derive rheological 
equations of state made significant progress in recent years and  made 
possible a unified approach (based on an  ideal model) that gives a 
satisfactory description of the experimental date on the viscoelasticity 
of polymers in connection with their molecular structure. At any rate 
the results are useful in understanding the approaches used in the 
phenomenological theories of polymer dynamics. 

We considered the constitutive equations of the theory obtained on 
the basis of the hypothesis of the dynamics of a macromolecule pre- 
suming its motion in  an  aftcr-cffcct medium. Subsequently, the 
hypothesis was discussed in detail i n  works of Russian investigators. A 
number of experimental appraisals of the theory undertaken by the 
authors (Vinogradov er ul., 1972. Pokrovskii and Yanovsky 1973, 
Yanovsky et al., 1988, Yanovsky 1993. Pyshnograi et d., 1994), and  
also other estimates shou,ed that the considered nature of the thermal 
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motion of a macromolecule is close to the real one. The conclusions of 
the theory and its results were also extended to nonlinear phenomena. 
In their corollaries, the conclusions of the theory correspond to the 
observed experimental results. The determining equations can be for- 
mulated in various approximations. 

It should be noted that the proposed dynamics of a macromolecule 
in an undilute system can be used to study behavior of the surface 
layers. Unlike the previous case, we must add the forces attracting a 
macromolecule to the surface- nonlinear terms. 

We should to use computer simulation methods to analyze the beha- 
vior of a macromolecule on the basis of non-linear macromolecular 
dynamics. These methods allow us to follow the trajectory of a macro- 
molecule and calculate the averaged values under different surface forces. 

The investigation of macromolecules gives the mean length of a 
surface layer, The investigation of the time correlation function gives 
the set of relaxation times of the macromolecule near the surface. 

Consequently, the length of the surface layer and its relaxation 
times can be calculated from the dynamics of a single macromolecule. 
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